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Contribution of J-Dependent Potential
in Differential Cross-Sections of Two-Nucleon
Transfer Reactions
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Heavy-ion reactions with two-nucleon transfer are studied within the framework of
the distorted wave Born approximation (DWBA) calculations. The bound-states of the
transferred particle with the core nucleus forming the projectile or target and residual
nuclei are represented by a Yukawa potential. The calculated differential cross-sections
are in good agreement with the experimental data. The study exhibits the important
contributions of the J-dependent potential in reproducing the large-angle oscillatory
structures of two-nucleon transfer reactions.
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1. INTRODUCTION

The two-nucleon transfer reactions have been studied using the DWBA cal-
culations at energies below and above the Coulomb barrier (Maglioneet al.,
1985; Videbacket al., 1985). The oscillatory structures of the differential cross-
sections of two-nucleon transfer reactions have been well described using both
Coupled Channel Born approximation (CCBA) and DWBA calculations (Kondo
and Tamura, 1984). Recently the uprising oscillatory structures of heavy-ion trans-
fer reactions (Gaoet al., 1988; Xia and He, 1988) were investigated in terms of the
nuclear molecular-orbital theory. In such calculations, although the DWBA calcu-
lations (Kabiret al., 1988) show a wide discrepancy to the backward angle data,
but a reasonable investigations have been achieved within the density-dependent
calculations (Ferreroet al., 1990), parity-dependent potential (Bilweset al., 1987),
and real-folding potential (Charajiet al., 1993; Trekaet al., 1990).

In the present work, the differential cross-sections of heavy-ion reactions
with two-particle transfer have been calculated using DWBA calculations as a
single direct-step process. The nucleus–nucleus interaction is taken to have real
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and imaginary Woods-Saxon form. The obtained results of the present theoretical
DWBA calculations are fitted to the experimental data to extract the corresponding
spectroscopic factors.

In Section 2, first-order DWBA formulation is introduced. Numerical cal-
culations and results are given in Section 3. Section 4 is left for discussion and
conclusions.

2. FIRST-ORDER DWBA APPROACH

In this section, we deal with a one-step distorted wave Born approximation
process (Tamaura, 1974). Therefore, the transition matrix elementTf l for heavy-
ion transfer reactionT(A, X)R with a transferred particleC is expressed to have
the post form

Tf l =
∑

l j
l ′ j ′

S(l , j )S∗(l ′, j ′)〈JXµX; (JC j ′(JAl ′))|Tll ′ |JTµT ; JAµA(JC j (JXl )) (1)

whereS(l , j ) and S∗(l ′, j ′) are the spectroscopic factors in the initial and final
channels, respectively;Ji andµi are the spin angular momentum of the particle
i and its magnetic projection on thez-component;Tll ′ is the reduced transition
matrix element, given as

Tll ′ =
∫

F(r )φ∗l
′ j ′

T C (ErT C)ψ∗(−)
X R

(
EKX,−MT

MR
ErT C

)
ψ

(+)
AT ( EK A, ErT C)dErT C (2)

whereψ (+)
AT andψ (−)

X R are the ingoing and outgoing distorted wave functions, while
φl ′ j ′ stands for the wavefunction which describes the bound state of the residual
nuclei R; F(r ) is the reduced form factor expressed as

F(r ) = V0
xcN(l , . . .)(2l+1)e

Rx+Rc
a

·
[

Z

2a
+ 1√

π

(
1− Rx + Rc

2a

)
(Z2+ Q2) · 1

(Z2+ Q2)2

]
(3)

where

Z = β + 1

a
(4)

and

Q2 = (σ ′E f + γ ′Ei − δ′Ebin
T C)+ (δ′VT C(rT C)− γ ′Ṽi (rT C)− σ ′Ṽf (rT C)) (5)

The statistical factorsσ ′, γ ′, and δ′ are adjusted within the local WKB-
approximation to have the values

σ ′ = 2σ
mX R

h2 , γ ′ = 2γ
mAT

h2 and δ′ = 2δ
mAT

h2 (6)
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where the coefficientsσ , γ , andδ are expressed to have

σ = 1+ MX

MA
, γ = MX

MA

(
1+ MX

MA

)
and δ = −MX

MA
(7)

Mi j is the reduced mass of the particlesi and j ; whereEi , E f , andET C are the
respective initial, final, and binding energies;Ṽi andṼf are the optical potentials
in the initial and final channels, respectively, whileVT C stands for the bound-state
interaction in the final channel which is taken to have Yukawa plus exponential
potential (Sikoraet al., 1980).

Vi j (ri j ) = V0

(
2+ ri j − (Ri + Rj )

a

)
e
−ri j +Ri +Rj

a (8)

where

V0 = [C(i )C( j )]
1
2

aRi Rj

r 2
0(Ri + Rj )

(9)

and the parameterC(p) has the value

C(p) = A(p)

[
1− Ks

(
Np − Zp

Ap

)2
]

; p = i , j (10)

In these calculations, the bound-state wave functionφi j (Eri j ) is taken to have
Morinigo form

φi j (Eri j ) = N(l , . . .) e−βri j r l−1
i j Yl

m(ˆ̄r i j ) (11)

where

N(l , . . .) =
(

(2β)2l+1

(2l )!

) 1
2

(12)

and

β2 = 2mi j

h2 |Ebin
i j |. (13)

3. NUMERICAL CALCULATIONS AND RESULTS

In this section, numerical calculations are carried out for different heavy-ion
reactions with two-nucleon transfer. In the calculations presented in this section,
we consider16O(6Li,α)18F and76Ge(16O, 14C)76Se. In a first set of calculations,
the optical potential is taken to have the standard Woods-Saxon potential (Kondo
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Table I. Woods-Saxon Optical Potential Parameters

V0 rv av W0 rw aw rc

Channel Set (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) Refs.

4He+ 19F I 180.0 1.42 0.56 16.5 1.42 0.56 1.40 Lepine-Szilyet al., 1990
II 170.0 1.26 0.78 12.0 1.85 0.85 1.25

6Li + 16O I 187.0 1.30 0.70 31.4 1.70 0.90 1.40 Tanabeet al., 1981
II 160.6 1.25 0.79 9.0 2.05 0.85 1.35

16O+ 76Ge I 100.1 1.06 0.63 24.0 1.20 0.62 1.06 Humanicet al., 1982
14C+ 78Se I 85.40 1.22 0.49 39.2 1.20 0.47 1.25

II 40.0 1.34 0.45 25.0 1.50 0.45 1.45

and Tamura, 1984) together with a Coulomb potential. The potential used is ex-
pressed as

Ṽ(r ) = −V0{1+ exp[(r − Rv)/av]}−1− iW0{1+ exp[(r − Rw)/aw]}−1+VC(r )
(14)

VC(r ) is the Coulomb potential due to a uniform charge sphere of radiusRC =
rc A1/3 fm. The interaction radii have the expression

Rx = rx

(
A1/3

i + A1/3
j

)
for x = v, w, c. (15)

For numerical calculations, the parameters of the optical potential are expressed in
different sets to investigate the sensitivity contribution of these parameters in repro-
ducing the experimental data as listed in Table I. Whereas the different parameters
of Yukawa interaction are given asA(i ) = 21.17 MeV,r0 = 1.18 fm,a = 0.65 fm,
and the surfacea symmetry constantKS = 3.0 which are chosen to fit the static
properties of nuclei. The bound-state parameters are taken as those used in the
previous calculations given in Table II. The number of nodes of the radial wave
functions are calculated from the harmonic oscillator relation. Initially, the present
DWBA calculations were performed using the Woods-Saxon potential parameters
(Set I). It is found that the parameters Set I provide a reasonable description of
the forward angle region, but they do not fit the large angle data. Therefore, the

Table II. Bound-State Parameters

State E (MeV) r0
a (fm) a (fm)

6Li ==4He⊕ d (1+ g.s.; 2s and 1d) 1.47 1.05 0.65
16O==12C⊕ 4He (0+ g.s.; 2s) 7.16 1.20 0.60
18F==16O+ d (1+ g.s.; 2s, 3s, and 2d) 7.53 1.29 0.65

(3+ 0.927 MeV; 2d)
(5+ 1.022 MeV; 1g)

18F==12C+ 6Li (1+ g.s.; 4s and 3d) 13.22 1.20 0.60

a Rbound= r0 (A1/3
1 + A1/3

2 ) fm.
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six-potential parameters are varied to obtain the best fit of the data. The resulting
parameters are listed in Table I in different families (Set II). Generally, it is found
that the obtained parameters are not drastically different from those used to start
searches. In this analysis, the parameters of the model are varied to give the best
fit to the data by minimizing

χ2 =
n∑

i=l

(
σexp(θi )− σtheo(θi )

1σexp(θi )

)2

(16)

wheren is the number of the differential cross-section data points,σtheo(θi ) be-
ing the i -th calculated cross-sections,σexp(θi ) and1σexp(θi ) are the correspond-
ing experimental cross-sections and their relative uncertainties. The results of
the present numerical calculations of the form factors are introduced in Figs. 1
and 2. In general, the form factors behave in a typical behavior and yield nearly
the same shapes for all mentioned states. However, the results obtained for the
differential cross-sections are given in Figs. 3 and 4 as shown by the dashed
lines. The fits to the data are quite good over the entire angular range but the
predictions are too low in magnitude at large angles for the most considered
states.

In an effort to investigate the sensitivity of the differential cross-sections to
the details of the ion–ion interactions, the optical potential model is modified
to include different absorptions. In these calculations the imaginary potential is
demonstrated by the superiority of angular momentum-dependent absorptive from
Kondoet al. (1985) given as

W(r, j ) = W0(1+ exp[(r − Rw)/aw])−1(1+ exp[(J − Jc)/1J])−1 (17)

where Jc is a cutoff angular momenta and1J is the angular momenta cutoff
diffuseness parameter. For each energyJc is parameterized by the expression

Jc = R̄[(2µ/h2)(Ecm− Q̄)]
1
2 (18)

whereR̄ andQ̄ represent average values of the radius and the threshold energy for
the predominant nonelastic reactions, respectively;µ is the reduced mass of the sys-
tem. In fact, although the calculated differential cross-sections with J-dependent
imaginary potential (solid lines) are comparable to those using real and imag-
inary Woods-Saxon form factors (WS+ WS) at forward angles but are quite
different at large angles. As shown in Figs. 3 and 4, it is found that the effect of
J-dependent potential is small in the backward region. Generally, calculations em-
ploying Woods-Saxon potential fit reasonably well the forward angle data but give
rise back angle. However, the inclusion of the J-dependent potential improves the
cross-section magnitudes and exhibits good results better than those using standard
Woods-Saxon potentials. In comparison, using both (WS+WS) and (WS+ JD)
optical potentials are found to be in a good agreement with the experimental data
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Fig. 1. Yukawa form factors of16O(6Li, α)18F reaction for different angular
momenta with optical potential parameters (Set II).

in the forward region. In addition, although calculations employing J-dependent
imaginary potentials give an equivalent fit to the experimental data in the large
angle region as shown in Fig. 4 but it grossly overestimate the cross-sections at the
back-angle region. By matching the present theoretical calculations of the differ-
ential cross-sections with the experimental data, the spectroscopic factors in each
reaction state are extracted

S(l , j ) = 1

NR

(2Ji + 1)

(2J + 1)

(dσ/dÄ)exp

(dσ/dÄ)theor
(19)

where NR is normalization factor and the remaining symbols carry their usual
meaning. The obtained values of these factors are listed in Table III.
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Fig. 2. Yukawa form factors of76Ge(16O,14C)78Se reaction for different angular
momenta with optical potential parameters (Set I).

4. DISCUSSION AND CONCLUSIONS

In the present work, heavy-ion transfer reactions are successfully studied in
the framework of the DWBA calculations employing different ion–ion interactions.
The present calculations show that the form factors depend only on the value of the
transferred angular momentum as shown in Figs. 1 and 2. The calculations of the
angular distributions given in Figs. 3 and 4 show that the present DWBA calcula-
tions using real and imaginary Woods-Saxon potentials (WS+WS) reproduce the
angular distributions in the forward angle region fairly well. Where calculations
using J-dependent imaginary potential give an equivalent fit to the experimental
data in the large angle region and introduce a description better than those using
real and imaginary Woods-Saxon optical potential.
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Fig. 3. Differential cross-sections of the16O(6Li, α)18F two-nucleon transfer re-
action (1+, g.s.) at 34.0 MeV incident energy. The solid and dashed curves are the
present theoretical DWBA calculations using (WS+ JD) and (WS+WS) optical
potentials, respectively. The dots are the experimental data taken from Ichihara
and Yoshida (1986).

In general, the oscillatory structures of the calculated differential cross-
sections at the forward angles are found to be unchanged with the choice of the
optical potentials but those at large- and backward-angles are greatly affected.
In addition, although the inclusion of the J-dependent term is found too small
to account for the cross-section values at backward region, but it leads to better
description than the Woods-Saxon potentials.

In conclusion, we conclude that both magnitudes and shapes of the differential
cross-section are satisfactory well reproduced in the forward- and large-regions.
Also, the present one-step DWBA calculations using real Woods-Saxon potential
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Fig. 4. The angular distribution of the76Ge(16O, 14C)78Se two-nucleon transfer
reaction at 56.0 MeV incident energy leading to 0.0, 0.61, and 2.50 MeV different
78Se excited states. The solid and dashed curves are the present theoretical DWBA
calculations using (WS+ JD) and (WS+WS) optical potentials, respectively. The
dots are the experimental data taken from Mermaz (1980).

Table III. Spectroscopic Factors

Present spectroscopic factors
Incident Excitation

Reaction energy (MeV) energy (MeV)Jπ Previous (WS+WS) (WD+ JD)

16O(6Li, α)18F 34.0 0.00 1+ 0.76 0.77 0.79
76Ge(16O, 14C)78Se 56.0 0.00 0+ 0.54 0.67 0.77

0.61 2+ 0.62 0.71 0.79
2.50 3− 0.58 0.62 0.73
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and imaginary J-dependent term are sufficient to describe the general features of
two-nucleon transfer data.
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